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Overlapping Stokes smoothings in adiabatic quantum 
transitions 

R Lim 
H H Wills Physics Laboratory, T y n d d  Avenue, Bristol BS8 ITL, UK 

Received 27 May 1993 

Abstract. A twh-state quantum system whose Hamiltonian varies adiabatically has a weak 
probability ofmakidg transitions between its instantaneous energy eigenstates. If the SyStem 
is started out in an eiganstate and its evolution tracked using suitablydefmed ‘superadia- 
hatic’ states, the transition probability exhibits the error-function growth characteristic of 
the birth of subdominant exponentials across Stokes lines. Here we study model Hamiltoni- 
ans associated with pairs of Stokes lines in the complex time-plane. The overlapping of 
Stokes crossing phenomena influences the final transition probability and also leads to 
interference effects in the transition history. These eKects can be adjusted by turning param- 
eters m the models. 

1. Introduction 

Weak transitions in a quantum system whose Hamiltonian k ( r )  is adiabatically per- 
turbed provide an excellent illustration of the Stokes phenomenon of asymptotics (Berry 
1990a, hereafter called I, and Lim and Berry 1991, hereafter U). For simplicity, we 
focus on two-level systems and ensure that transitions are weak by requiring that H ( z )  
has no degenerate eigenvalues for real r. It is well known (Landau and Lifshitz 1977) 
that if the system begins in an eigenstate, the transition amplitude (square root of the 
transition probability) after infinite time is exponentially small in the adiabatic 
parameter& governing the rate of the perturbation, i.e. the transition amplitude 
-exp(-wJ&) where the quantity wc will be defined shortly. The weak appearance of 
the other eigenstate corresponds to the Stokes phenomenon, in which the subdominant 
partner of two exponentials in an asymptotic expansion appears weakly as a Stokes 
line is crossed (Berry 1989). 

This correspondence arises because exponentials enter into the quantum problem 
in a way which is natural, yet has subtle consequences. The slowly perturbed system 
adheres closely not to the instantaneous energy eigenstate, hut to this state multiplied 
by a time-dependent phase factor (complex exponential) which is proportional to the 
time-integral of the energy eigenvalue. Although such exponentials clearly cannot enter 
into the transition amplitude, their presence actually underpins the link with the Stokes 
phenomenon. Studying the transitions using a pair of basis states whose definition 
includes these phase factors makes it possible to observe refinements in the Stokes 
phenomenon, such as the optimal error-function smoothing of the growth of the transi- 
tion amplitude [described in I and depicted in 11). The optimal basis is part of a sequence 
of ‘superadiabatic’ bases, the procedure for whose construction is outlined in section 2 
(and derived fully in I).  
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Here we go a step beyond 11, and study Hamiltonians whose matrix elements are 
such that the evolution of the quantum system involves the crossing of two Stokes lines. 
Each Stokes jump is of the same magnitude, but the transition amplitude is not, in 
general, doubled because the overlapping of the smootbings gives rise to interference 
effects. These affect both the final transition probability and the history of the transition. 
The transition history becomes the sum of error functions with a relative phase; their 
widths and separations can be adjusted by varying parameters in the Hamiltonian. 

2. Background 

2. I .  Superadiabatic bases 

We wish to solve the Schr6dinger equation 

(1) 
d 

fi(r)l v(z))=i&Gl ~(7)) 

where we can take fi( r )  to be a real symmetric 2 x 2 matrix (analytic in a strip containing 
the real time-axis) 

and we have replaced li with the adiabatic parameter E and scaled time 7. (The only 
generality we lose by taking H real is the exclusion of contributions to the transition 
probability which are analogous to geometric phases (Berry 1990b, Joye et al 1991a); 
such contributions will not concem us here.) The energy eigenvalues are *H(z)= 
*((z'(r) +X2(r))In and we require that H ( r )  # O  for real 7. 

The system govemed by (1) starts out in the upper energy eigenslate at r=-co. 
The aim is to describe the subsequent evolution in terms of transitions between the 
orthogonal basis states I v.+(T)) and [ ~ " - ( r ) ) ,  which are part of a sequence of bases 
given by expansions in E of order n. The plus states of all the bases coincide with the 
actual evolving state as T+-CO, i.e. if we write 

I W ( T ) >  =Cn+(T)l Y'n+(r)>+ Cn-(T)l  Vn-(r)) (3) 

we would require that c,+(r+-m) = I .  To obtain the transition history c,,-(z) we need 
to know the procedure for constructing I y.-). It is given by 

with 

sin[?] 
( 5 )  
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being the instantaneous energy eigenstates. In accordance with our boundary conditions 
at T =  -m the zeroth-order 'adiabatic' basis has ao(r)  = O  and Po(.) = I. The exponen- 
tial in (4) is the phase factor mentioned in section 1 ; the conjugate phase factor occurs 
in the definition of Iy.+(t)). 

To construct I yn-), we solve for ~ ( 7 )  and P,"(T) by requiring that I y )  = I ym-> 
formally (see I). This gives the following recursion relations 

id a,(r)=- 
4H 

(Similar equations exist for I V - + ( T ) ) . )  These generate very complicated functions which, 
in general, can only be obtained by numerical iteration. For certain models, however, 
they can be found analytically using computer algebra. 

Note that in order for the coefficients a,. and p>n to be finite for large real T, it is 
sufficient for a Hamiltonian to satisfy Id/V -PO as I T I  + m on the real axis. We do not 
derive this here, but as this condition makes the a, go to zero for large positive times, 
it is not hard to see that it guarantees the Pm remain finite (provided that e either stays 
finite or goes to zero as T+m, both of which are not unreasonable). 

2. Transiiions and the Stokes phenomenon 

We now introduce the monotonically increasing function of time 

(7) 

which will be useful for reparameterizing later results. Along a Stokes line, the ratio of 
the magnitudes of the exponentials in an asymptotic expansion changes at a maximal 
rate. Stokes lines are thus like lines of steepest ascent/descent for the exponents. Since 
the exponents in our pair of basis states are &iiv/2~, the Stokes lines correspond to 
Re w=constant (so that only Im w changes along them). We fix this constant by making 
the Stokes lines pass through saddle points w, of w,  where w'(z)  and hence Hare zero; 
the constant is thus Re wC. Sucb a choice is natural, for the zeros of H are branch 
points around which an asymptotic expansion containing one exponential cannot be 
analytically continued without introducing the other (Morse and Feshbach 1953). 

Thus Stokes lines connect points in the complex w-plane corresponding to energy 
degeneracies at complex times. In this general sense, transitions may be regarded as 
being associated with the energy gap between the states going to zero when H(T) is 
analytically continued off the real time axis. Note that since the final transition ampli- 
tude is exponentially small in E, only those values of wG closest to the real axis and in 
the lower half-plane need be considered. Indeed to observe Stokes jumps of comparable 
magnitude, we require that these points have similar imaginary parts. 
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However, such complex energy degeneracies are not essential to the existence of 
transitions. If we rewrite our Schradinger equation in terms of w, we have 

which has constant energy eigenvalues. Adiabatic transitions survive, however, because 
the quantities w, are now complex poles of the quantity dO/dw which enters into the 
perturbation-theory integral giving the transition history (see I) : 

c,- ( w ) - i - i ( - - ~ ) . ~ - ~ d ~ ' a ~ + ~  U. (w') exp 
(9) 

(In what follows, we generally suppress the minus subscript in c,- as it is understood 
we are looking at transitions to the lower superadiabatic states.) As can be observed 
from (6) ,  the a. contain successively higher powers of dO/dw by recursion, and use of 
a theorem due to Darboux (Henrici 1977) shows we may approximate a. on the real 
axis by its singular form near the poles w,, provided n is large. This form gives us a 
non-vanishing contribution to the integral (9) and may be used to evaluate the transition 
history, as explained in I and also in Berry and Lim 1993 (hereafter called 111). 

We obtain the final transition amplitude c, (CO) by deforming the contour of integra- 
tion below the real axis and around poles of dS/dw, after which we may use the 
residue theorem. The Stokes phenomenon also survives despite the lack of saddle points, 
because there is still a Stokes line at Re n = O .  To observe error-function smoothing of 
the Stokes jump, we use (4) up to its least term, i.e. at n-IIm(wJl/~ (see I). Then the 
smoothing we obtain for each pole I G ~  is, with r=IRe wJ and s= IIm WJ. 

-=xp 
2ES 2iw E + "11 E 

+ (-I)"+' & [ (w-r)Z 
w-r+Z.s 

(The exponential term in the curly brackets describes small oscillations in the smoothing. 
These are calculated and displayed in I1 but we do not use them here.) 

In the more general case where we have several poles n7 of comparable proximity 
to the real axis, it is plausible to just add contributions of the form given by (IO), with 
the important caveat that we must consider the signs of the residues at these poles. 
These are not independent of one another, as we discuss in the next section. The final 
transition amplitude, for example, is 

where the (*),. denotes the appropriate sign for the residue at the nrth pole. This is 
derived and discussed in considerable detail by Joye er al (1991b). (In fact (LO), and 
hence (II), can contain an additional and non-trivial prefactor for certain models, a 
fact we discuss in 111.) 

As a basic example, take the well-known Landau-Zener Hamiltonian (Zener 1932). 
This has Z= z, X= 1. It has energy degeneracies at w,= filr/2, i.e. the Stokes line is 
the imaginary axis in the w-plane, which is crossed at w= z=O. The optimal transition 
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history is indeed an error function centred on w = O ,  with the expected width and height 
(figure I of 11). For more complicated models with overlapping smoothings, one might 
expect to see some merging of the error functions as well as interference resulting from 
error functions switching on with different phases. We shall demonstrate that this is 
indeed what is observed. 

6 .  
0 
0 
0 
0 

4 :  

2 -  

3. Demkov-Kunike model 

Now consider a Hamiltonian due to Demkov and Kunike (1969), recently studied by 
Suominen and Garraway ( I  992) : 

where U is a real parameter. This model, which is exactly solvable, has energy degenera- 
cies at times F, given by Z(rc) = fiX(z,), i.e. 

Z(a)=tanh r X ( r ) = m s e c h  r (12) 

rS= i s i n h - ' ( i m ) .  (13) 

w,= n[u+i(4nf I ) ]  (14) 

These correspond to (Suominen and Garraway 1992), with n integral 

and also to the reflections of these points in the line Re w,=O (figure 1). Near these 
points (see appendix B of I), and with the restriction that u#O, 

t 0 

0 
0 
0 

a R e w  

What is important to note is that the i signs in (15) are matched to those in (13), i.e. 
pairs of points on the same side of the real axis in the w-plane have the same sign in 
the numerator of (15). Therefore when we deform the contour of integration in (9) 
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around such pairs, the residues from each pole have the same sign. Since the contribution 
of the nearest pair to the real axis dominates over the others for small E ,  the final 
transitioo amplitude is given by ( I  1) as 

This is borne out by examining the analytical solution of the Schr6dinger equation 
(Suominen and Garraway 1992). Note that it is not difficult to find models where 
residues from pairs of poles have opposite signs; an example is Z= TI, X =  1 (Suominen 
1992). 

The recursion relations (6) for the Demkov-Kunike model can also be exactly solved 
using symbolic packages. A practical way is to rewrite (6) in terms of 0, then use 

The case a=O is an example of the situation discussed earlier, where the energy 
levels become constant (= * 1) but transitions still occur because the points w, are now 
poles of dO/dw. Since the pair of poles nearest the real axis has now coalesced to one 
point, we might expect (16) to be incorrect and that the prefactor of 2 should become 
1. In fact (16) remains valid because the residue has changed accordingly (this is the 
non-trivial prefactor discussed in LII and also Joye 1993). The transition histories one 
obtains look very like those for Landau-Zener, and hence we do not include them here. 

Equations (IO) and (16) make clear that one cannot hope to independently adjust 
the final transition probability and the placement and width of the optimal error 
functioos, since changes io a would affect all of these. The order at which optimality 
is obtained is also affected. For our purposes, we have initially chosen to keep the final 
transition amplitude constant at zero (by making the cosine in (16) zero) while changing 
a and E to cause the gradual coalescence of the Stokes smoothings. With a = 2  and E =  

$, the error functions are widely separated. Figure 2 shows the sequence of transition 
histories with the optimal order at 7. Note that the error functions are centred at the 
correct locations and show the same small oscillations that one can observe and account 
for in the Landau-Zener model (ii). In figure 3, for a=$, E = $ ,  the error functions 
have merged together. 

In the above cases, the Stokes jumps are out of phase by x ,  and it appears as though 
the transition switches on and then off again. However, if we make the cosine in (16) 
equal to 15, we might expect the second error function to be somewhat suppressed 
since the final transition amplitude is equal to the height of the first error function. 
This is indeed what we see, as illustrated in figure 4 for the case a= 1, &=S. 

It is not obvious that the second error function can be retrieved, but we can do this 
using the fact that the error functions are out of phase by 14n/3 radians (effectively 
120'). Hence if we wish to see both error functions contributing equally to the final 
transition history, we calculate the component of c. at a phase angle halfway between 
the two. According to (lo), this phase should be zero, with the error functions having 
phases of * 60". In fact an additional phase correction e2im(a. '' is required to achieve 
this, for reasons given in the appendix. With this correction the two constituent error 
functions in the optimal history are revealed, as shown in figure 5 .  



Overlapping Stokes smoolhings in quantum transitions 762 I 

h b 

b 



1622 R Lirn 

- 
r” 

0 0 0  

- 3 



7623 Overlapping Stokes smoothings in quantum transitions 

b 

b 



1624 R Lim 

b 

b 

h 
D 



Overiapping Stokes smoothings in quantum transitions 1625 



1626 R Lim 



Overlapping Stokes smoothings in quantum transitions 

b b 

b 

1621 



RLim 7628 

s 



Overlapping Stokes smoothings in quantum transitions 

b 

b 

____ 

7629 



7630 R Lim 

Figure 5. Demkov-Kunike transition history of figure 4, but calculated at a phase midway 
between those ofthe two error functions, cach of which is now seen to contribute equally 
to the final result. 

4. The modified Landau-Zener model 

This Hamiltonian was also studied by Suominen et a1 (1991), who call it ‘simple 
Lorentzian singularity’; it is: 

? U 
Ayr)=- 

%,lfiG 
Z(r)=- JiTP 

This is like the Landau-Zener model except that the energy levels are finite as ?+ f co. 
Energy degeneracies occur at r = f ia, and the levels also have a singularity at r = i. 
For this model, w is an elliptic integral of the second kind (Gradshteyn and Ryzhik 
1980) 

and we choose w to have branch cuts from r= f i a  (a< I )  or i (a> 1, figure 6(a))  to 
f iw.  We do not know of an analytical solution for this model, nor can the recursion 
relations (6) be algebraically integrated (except when a= 1). Hence we shall confine 
most of our discussion to the final transition amplitude, which can be computed by 
solving the Schrodinger equation in the adiabatic basis using the Runge-Kutta method. 

There are three cases that need be considered. When a < 1, there is one energy 
degeneracy (and its complex conjugate); the pole is further from the real axis than the 
degeneracy and hence we expect the transition amplitude to be determined from the 
degeneracy in the usual way. When a= 1, the energy levels are everywhere constant 
(= 21) but once again there are transitions due to singularities of dB/dw at we= +2i. 
The residue at these points is such that the (single) exponential in the transition ampli- 
tude is multiplied by a prefactor of ,,h (I11 and Joye 1993). 

The situation becomes more involved when a> I and the degeneracy is further away 
from the real time-axis than the pole. In the w-plane, the pole is a complete elliptic 
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( a )  Imz 

Figure 6. Branch cuts and contours for the transition h ory integral for the modified 
Landau-Zener model with a=2. We have used first-order perturbation theory applied to 
the adiabatic basis. The contour in the r-plane (a )  corrresponds to the solid line in the w- 
plane (b), which in the absence of branch cuts can be deformed into a loop, the lower part 
of which is indicated by the dashed line. The crossed circles are energy degeneracies and 
the unfilled circle is a pole of H(r) .  

integral of the second kind - 2inE ( I  /n2), a pure imaginary quantity, while the degener- 
acy can be mapped onto two points 

corresponding to opposite sides of the imaginary axis in the time-plane (figure 6(a), 
(6)). To obtain the final transition amplitude c, (w'co), we need to know how the 
degeneracies and poles affect the evaluation of (9). We do not have explicit forms for 
the functions a,(w) except for the adiabatic basis n=O, when (see (6) and (9)) 

co(w-t CO) = dw dB exp (- 2) 
-m 
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with, written as a function o f t ,  

d6' -- a(?+ l)'/' 
dw 2(22+a2)3/2' 
-_ 

Near the generacies w,, the behaviour of d0/dv is given by (15) for the Demkov- 
Kunike model as both models have the same leading-order singularities in their matrix 
elements (111 contains a detailed discussion of this point). Both values of w. also have 
residues with the same sign because they both stem from the same point in the 7-plane. 
Near the pole wj=w(-i), a local expansion of d0/dw and reverting the series shows 
that 

d0 ia(w-HPi) 
dwN4(d- 
_ N  

so that we have a first-order zero which does not contribute to the integral. 
We evaluate the integral by deforming the contour off the real w-axis. Simply con- 

verting (21) to a time integral shows that asuitable contour in the T-plane is one which 
curls tightly round the pole at r = -i and the branch cut arising from w( r )  (figure 6(a)) .  
The corresponding contour in the w-plane is shown in figure 6(6) ,  which in the absence 
of branch points can be deformed into the loop passing around w, and the two points 
w.. The integral is then given by summing residues at the degeneracies. In fact the 
answer thus obtained is too large by a factor of n/3, but as explained in I and 111 this 
renormalizes in a predictable way to 1. The final transition amplitude is thus expected 
to be 

(24) 2 cos (: ST dy(-y) 2-J  exp (- $ E(-$)) 
a> 1. 

3-1 

This is demonstrated in figure 7 for the case a=4. We have divided out the small 
exponential from the modulus of the final transition amplitude in order to bring out 

Figure I. Final transition amplitude (dots) compared with theory (thin line) for the modi- 
fied Landau-Zener model with a=4. To highlight the oscillatory behaviour the results have 
been scaled by dividing out the small exponenliai. 
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Energy deEeneracy further 

1 la 

Figme 8. Final transition amplitudes (dots) compared with theory (thin line) for the modi- 
fied Landau-Zener model with E =  1 .&; the results have been scaled by dividing out the small 
exponential. Note the smooth transition between the two regimes where the degeneracy is 
nearer/further than the pole from the real anis in the time-plane. In contrast the theoretical 
result has a discontinuity at II= I ,  for which the transition amplitude is A. 

the cosinusoidal behaviour (dotted line) over a range of values of E. While agreement 
with theory (solid line) is not perfect, the cosine oscillations can be clearly seen. 

The fact that we have only partial agreement with theory, at least as far as the 
magnitudes of the transition amplitudes are concerned, suggests that there are residual 
higher-order s-corrections from the pole which we have not taken into account. We 
can attempt to estimate their influence as the separation between pole and degeneracy 
is varied, with E held constant. Figure 8 shows the transition amplitude plotted as a 
function of a, with E= 1.6. We have again divided out the exponential to show the 
variation on a scale of unity. It can be seen that agreement with theory is good when 
a is not close to 1, i.e. when the degeneracy in the complex time-plane is far from the 
pole. For a-1, we see a smooth transition from the regime where there is only one 
contributing degeneracy ( a <  1) to the special case a= I where we have one degeneracy 
and a prefactor of ,b, to the regime in which there are two degeneracies (a> 1). 

5. Conclusions 

Our results show that adiabatic quantum transitions can be used to provide a remark- 
ably clear and simple illustration of the Stokes phenomenon, especially when more than 
one Stokes crossing is involved. It is not easy to find such explicit demonstrations of 
interference between Stokes smoothings in more traditional applications of asymptotics 
(Berry and Howls 1993). 

An obvious remaining area of uncertainty is the lack of precise agreement in cases 
where the energy degeneracy is further from the real axis in the time-plane than a pole. 
Our results for the modified Landau-Zener model show the oscillations in the final 
transition amplitude convincingly, but the agreement is often poor when the results are 
taken pointwise. It would seem that there is a slight phase shift in the oscillations which 
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could account for these discrepancies, but we do not as yet have an explanation for 
such a shift if indeed one exists. The reason for the smooth transition between regimes 
as the degeneracy moves relative to the pole is also not properly understood. A proper 
treatment would involve considering corrections which are of higher orders in E, but 
the correct way to do this is not obvious. 
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Appendix. Behaviour of the Demkov-Kunike model as T+ * CO 

The exact solution to the Schrodinger equation for the Demkov-Kunike model is 
derived in several sources, such as Suominen and Garraway (1992). With 

the solution can be stated in the form 

where *FI is the hypergeometric function, and 

a+i I i  I 
c(z) =- (1 + tanh r )  a-! p =  -_ 

E & y=2-E 2 
a=- 

in order to satisfy the boundary condition (Cz(r--m)(=O. The phase factor e”in 
(AI) is necessary to ensure that e,+ (?+-a) = 1 for all n. It is determined by matching 
the terms in (4), using 

and 
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where 

This explains the presence of the phases eip in (Al). Now note that c.-(r-rao) is 
( - 1  w )  exp(-iiv/2s) in any basis n. Use of (A3) and (A4) shows that this complex 
quantity has argument 2q(a, E). This is the origin of the phase correction mentioned 
at the end of section 3. 
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